题目1:具有IGRs作用的空间非局部害虫种群动力学分析
主讲人:吴瑞雯
时间:2025年6月16日(星期一)14:00
地点:北校区服务大厅三层第四会议室
主办单位:理学院
主讲人简介:
吴瑞雯,毕业于加拿大纽芬兰纪念大学获博士学位。从2019年9月至今在广州暨南大学数学系工作。吴瑞雯博士主要研究方向为应用动力系统及其在生态系统和传染病系统中的应用。相关论文发表在JDE, JMB, JNS, SIADS, SIAP等数学期刊。
摘要:
昆虫生长调节剂(Insect Growth Regulators, IGRs) 是一种特异性杀虫剂, 不直接杀死昆虫, 而是在昆虫个体发育时期阻碍或干扰昆虫正常发育, 使昆虫个体的生活能力降低或死亡, 进而使种群灭绝. 研究表明, IGRs不仅具有防治害虫的有效性, 还对其他有益的生物具有低毒性, 可以避免破坏生态系统, 这对于我国的综合害虫管理(IPM) 具有重要意义. 为了研究IGRs对于害虫防治的效果, 本文考虑在时空非均匀环境下刻画IGRs作用于害虫种群的非局部周期时滞反应扩散模型, 定义害虫种群增长的基本再生数R0, 并进一步证明R0是刻画害虫灭绝与否的一个阈值参数, 即当R0<1时, 无虫周期解全局渐近稳定, 害虫趋于消亡;当R0>1时, 系统存在唯一的全局渐近稳定的正周期解, 害虫将持续存在. 通过对模型的数值模拟分析, 验证了本文的理论结果并讨论了害虫防治的策略.
题目2: A pest population control model based on the cumulative lethal effects of periodic pesticide spraying
主讲人:庾建设 教授
时间:2025年6月16日(星期一)15:00
地点:北校区服务大厅三层第四会议室
主办单位:理学院
主讲人简介:
庾建设,广州大学教授,博士生导师,国家杰出基金获得者,国家有突出贡献中青年专家,国家“百千万人才工程第一层次、第二层次人选,教育部跨世纪优秀人才,享受政府特殊津贴专家,广州大学应用数学研究中心主任,国际差分方程协会主任委员会常委。庾建设教授长期从事微分方程动力系统、差分方程及生物数学模型的理论与应用研究,先后主持国家自然科学基金重点项目4项、数学交叉研究平台项目2项:曾获国家级教学成果一等奖1项,省部级科技成果教学成果一等奖4项:近年来,致力于应用数学的理论研究及其在基因表达、蚊媒传染疾病防控等方面的应用,已在《Nature》、《PloS Comput. Biol.》、《J. Differential Equations》、《SIAM J. AppIMath.》、《J.Math.Bio1.》《Phys. Rev. E》等重要数学、应用数学国际刊物发表论文 100 余篇,入选全球前 2%顶尖科学家榜单。
摘要:
Due to the presence of residual effect of pesticides, repeated spraying of pesticides has a cumulative lethal effect on pests. In this paper, we establish and analyze a pest control dynamic model based on the cumulative lethal effect and frequency of pesticide spraying. Our main aim is to accurately characterize the killing-rate due to the cumulative lethal effect of pesticide spraying. Our analysis gives an integral invariant of the cumulative killing-rate function, which plays a key role in obtaining a complete dynamic analysis of the model including the existence, uniqueness and stability of periodic solutions. We derive a threshold of pesticide spraying period for the eventual extinction of the pest population. By combining our theoretical findings and numerical simulations, in accordance with the frequency and cumulative killing-rate function of pesticide spraying, pesticide spraying strategies can be determined to achieve effective pest control within a predetermined time. This is a joint work with Zhigang Liu, Bo Zheng and Jia Li.
题目3:Global competitive dynamics of Aedes aegypti and Aedes albopictus
主讲人:郑波 教授
时间:2025年6月16日(星期一)16:00
地点:北校区服务大厅三层第四会议室
主办单位:理学院
主讲人简介:
郑波,博士,教授,博士生导师。主要从事常微分方程、泛函微分方程及生物数学模型的理论与应用研究,在《Nature》、《SIAM Journal of Applied Mathematics》、《Journal of Mathematical Biology》、《中国科学》、《Journal of Differential Equations》、《Journal of Dynamics and Differential Equations》、《Journal of Theoretical Biology》、《Theoretical Population Biology》等国际国内重要刊物上发表论文40余篇。先后主持国家自然科学基金4项、广州市教育局3项,2014年入选广东省高校优秀青年教师培育对象,是教育部创新团队“泛函微分方程及相关问题”的骨干成员。获得首届秦元勋青年数学奖。
摘要:
Aedes aegypti and Aedes albopictus are the main vectors of dengue. To study their global competitive dynamics, we introduce a planar time-switched model that considers favorable-unfavorable seasonal shifts, the interspecific mating competition in the favorable season, and the overwintering capacity in the unfavorable season. For dynamics during the favorable season, we find a sharp estimation of a separatrix that determines who outcompetes whom. When the two species undergo seasonal transition, the separatrix disappears and the time switching results in the discontinuity of the vector field, which causes complex dynamical behaviors. By analyzing the associated Poincare map, sufficient and/or necessary conditions for the existence and stability of periodic solutions are obtained. The results show that asymmetric mating interference and wintering ability are important factors affecting the interaction dynamics of Aedes aegypti and Aedes albopictus. By understanding and potentially manipulating these interactions, it might be possible to effectively reduce the size of unwanted species. This is a joint work with Professor Jianshe Yu, Dr Hongpeng Guo and my PhD student Lijie Chang. We are grateful to Professor Xiaoqiang Zhao for offering helpful comments and continuous support throughout the preparation of this manuscript.