题 目:A Hamilton-Jacobi approach for asymptotic spreading of competitive species
主讲人:刘爽 副研究员
时 间:2024年9月27日(周五)下午19:00
地 点:腾讯会议 177-493-445 密码:240927
主办单位:理学院
主讲人简介:
刘爽,北京理工大学数学与统计学院副研究员,2021年12月毕业于中国人民大学,师从楼元教授。主要研究方向为偏微分方程和生物数学,关注椭圆和抛物算子的特征值理论和多物种的传播性质。在Trans. Amer. Math. Soc., J. Funct. Anal., SIAM J. Appl. Math., SIAM J. Math. Anal.等期刊发表论文十余篇。
摘要:
In this talk, we shall discuss some spreading properties of the Lotka-Volterra competition-diffusion system. When the initial data vanish on a right half-line, we derive the exact spreading speeds and prove the convergence to homogeneous equilibrium states between successive invasion fronts. Our method is based on the Hamilton-Jacobi approach for Fisher-KPP equation due to Freidlin, Evans and Souganidis. Our main result settles an open question raised by Shigesada et al. in 1997, and shows that one of the species spreads to the right with a nonlocally pulled front. This is a joint work with King-Yeung Lam and Qian Liu.