报告题目:An efficient algorithm for the flow-coupled anisotropic dendritic crystal model
主讲人:杨教授
时间:2022年7月14日(周四)上午09:00 —10:00
地点:腾讯会议 (750-914-865)
主办单位:理学院
主讲人简介:杨教授,美国南卡莱罗纳大学教授,1998年以及2001年于中国科学技术大学数学系分别获数学学士以及硕士学位。2007年在美国普度大学获应用数学博士学位。2007-2009年在美国北卡罗来纳大学教堂山分校从事博士后研究。2009年加入美国南卡莱罗纳大学数学系,目前担任该校数学系教授。主要从事多相复杂流体, 软物质材料的数值计算方法与分析。目前在Mathematical Models and Methods in Applied Sciences、Computer Methods in Applied Mechanics and Engineering、Journal of Computational Physics、SIAM 系列、Mathematics of Computation等计算数学领域国际顶级学术期刊上发表SCI论文140余篇。
报告摘要:We consider numerical approximations of the flow-coupled anisotropic phase-field dendritic crystal growth model. This is a highly complex coupled nonlinear system consisting of the anisotropic Allen-Cahn equation, the heat equation, and the Navier-Stokes equation. Through the combination of a novel EIEQ approach based on the “zero-energy-contribution” feature satisfied by the coupled nonlinear terms, we develop an efficient numerical scheme with linearity, decoupled structure, unconditional energy stability, and second-order time accuracy. In the process of obtaining a full decoupling structure and maintaining energy stability, the introduction of two auxiliary variables and the design of two auxiliary ODEs play a vital role. The unconditional energy stability of the scheme has been strictly proved, and the detailed implementation process is given. Through several numerical simulations of 2D and 3D dendritic crystal growth examples, we verify the effectiveness of the developed algorithm.