题目: The exotic inverted Kloosterman sum
主讲人:扶磊
时间:2024年6月7日(周五)9:00
地点:理学院研究生自习室317
主办单位:理学院
主讲人简介:
扶磊,美国Rice University博士,曾任职于南开大学陈省身数学研究所,2016年起任职于清华大学丘成桐数学科学中心。国家杰出青年基金获得者,教育部长江学者特聘教授。
摘要:
Let $B$ be a product of finitely many finite fields containing $\mathbb F_q$, and let $\chi: B^*\to \mathbb C^*$ be a multiplicative character.
Katz introduced the so-called exotic inverted Kloosterman sum
$$\sum_{\substack{x\in B^*, \\ \mathrm{Tr}_{B/\mathbb F_q}(x)\not =0,\;
\mathrm{N}_{B/\mathbb F_p}(x)=a}}
\chi(x)e^{\frac{2\pi i}{p}\Big(\frac{1}{\mathrm{Tr}_{B/\mathbb F_q}(x)}\Big)}\quad (a\in\mathbb F_q^*).$$
We explain how to use algebraic geometry to study such a sum. This is a joint work with Daqing Wan.