报告题目:Equilliburm preserving space in discontinuous Galerkin methods for hyperbolic balance laws
主讲人:徐岩教授
时 间: 2023年7月14日(周五)9:40-10:40
腾讯会议: 874-445-918
主讲人简介:
徐岩,中国科学技术大学数学科学学院教授。2005年于中国科学技术大学数学系获计算数学博士学位。2005-2007年在荷兰Twente大学从事博士后研究工作。2009年获得德国洪堡基金会的支持在德国Freiburg大学访问工作一年。主要研究领域为高精度数值计算方法。2008年度获全国优秀博士学位论文奖,2017年获国家自然科学基金委“优秀青年基金”, 2017年获中国数学会计算数学分会第二届“青年创新奖”。徐岩教授主持国家自然科学基金面上项目、德国洪堡基金会研究组合作计划(Research Group Linkage Programme)、霍英东青年教师基础研究课题等科研项目。担任SIAM Journal on Scientific Computing, Journal of Scientific Computing, Advances in Applied Mathematics and Mechanics, Communication on Applied Mathematics and Computation、计算物理等杂志的编委。
摘要:
In this paper, we develop a general framework for the design of the arbitrary high-order well-balanced discontinuous Galerkin (DG) method for hyperbolic balance laws, including the compressible Euler equations with gravitation and the shallow water equations with horizontal temperature gradients (referred to as the Ripa model). Not only the hydrostatic equilibrium, but our scheme is also well-balanced for the exact preservation of the moving equilibrium state. The strategy adopted is to approximate the equilibrium variables in the DG piecewise polynomial space, rather than the conservative variables, which is pivotal in the well-balanced property. Our approach provides flexibility in combination with any consistent numerical flux, and it is free of the reference equilibrium state recovery and the special source term treatment. Extensive numerical examples are used to validate the high order accuracy and exact equilibrium preservation for various flows given by hyperbolic balance laws. With a relatively coarse mesh, it is also possible to capture small perturbations at or close to steady flow without numerical oscillations.