报告题目:Mathematical Modeling and Research for Schistosomiasis with Seasonal Influence (具有季节影响的血吸虫病的数学建模与研究)
主讲人:张太雷 教授
时 间:2022年3月24日(周四)晚上19:30
地 点:腾讯会议(536 314 988)
主讲人简介:
张太雷,长安大学理学院教授,硕士生导师,数学与统计学科主任,现任陕西省数学会理事、陕西省工业与应用数学学会理事,长期从事《常微分方程》(本科),《泛函分析》(硕士生)、《常微分方程定性稳定性理论》(硕士生)以及《数理统计与随机过程》(硕士生)等课程的教学工作。在国内外期刊发表论文50余篇,其中第一作者SCI检索23篇,编著教材1部。先后主持国家自然科学基金、中国博士后科学基金项目各1项、陕西省自然科学基金项目2项,长安大学中央高校专项资金项目2项,主持并完成本科生教学改革项目1项及研究生课程改革项目2项。近两年以第一作者等在国际知名期刊SIAM J. Appl. Dyn. Syst., Math. Biosci. Eng., Comm. Pure Appl. Math., Appl. Math. Model.发表学术论文;指导硕士生在《浙江大学学报》(理学版),《山东大学学报》(理学版), Appl. Math.- J. Chin. Univ. Ser. B,Electron. Res. Arch.等国内外期刊发表学术论文。
摘要:
In this talk, we investigate a time-delayed differential model of the transmission dynamics of Schistosomiasis with seasonality. In order to study the influence of water temperature on egg hatching into miracidia and the development from miracidia to cercariae, we incorporate time-dependent delays into the model to describe the maturation period and the extrinsic incubation period (EIP). We first introduce the basic reproduction number R_0 for this model and establish a threshold type result on its global dynamics in terms of R_0 More precisely, we show that the disease is uniformly persistent when R_0>1, while the disease-free periodic solution is globally attractive when R_0<1 Then we choose parameters to fit the Schistosomiasis epidemic data in Hubei province of China. Our numerical simulations indicate that the Schistosomiasis will continue to prevail in the near future unless more effective control measures are taken. A further sensitive analysis demonstrates that the parameters with strong impact on the outcome are baseline transmission rate, recovery rate, Schistosomiasis eggs output rate, contact rate between miracidia and snails and cercariae output rate.