题目: Spectral Stability Theorems for Hypergraphs and Applications
主讲人:康丽英 教授
时间:2025年12月15日(星期一)14:00
地点:#腾讯会议:596-371-793
主办单位:理学院
主讲人简介:
康丽英, 上海大学数学系教授。曾获得“上海市三八红旗手”,“上海市曙光学者” 称号,曾获得“上海大学吴兴华数学奖”。研究兴趣包括极值图论、图和超图的谱。 在《Journal of Combinatorial Theory, Series B》、《SIAM Discrete Mathematics 》、《Journal of Graph Theory》、《European Journal of Combinatorics》等重要学术期刊上发表学术论文180 余篇。主持国家自然科学基金项目多项,参加国家自然科学基金重点项目1 项,参加重大研究计划1 项。现担任中国运筹学会常务理事、中国工业与应用数学学会组合图论专业委员会秘书长、中国数学会组合图论分会理事。担任国际期刊《Discrete Mathematics, Algorithms and Applications》、 《Journal of the Operations Research Society of China》、《Communications on Applied Mathematics and Computation》和国内期刊《运筹学学报》编委。

摘要:
Spectral stability results are powerful tools for solving spectral extremal problems, which says roughly that a near-extremal (with respect to spectral radius) $n$-vertex $F$-free graph must be structurally close to the extremal graphs. Such stability results are crucial in resolving spectral Turán-type problems. In this talk, we present spectral stability results for hypergraphs and their applications. For $k \geq r \geq 2$, let $H_{k+1}^{(r)}$ denote the $r$-uniform hypergraph obtained from $K_{k+1}$ by enlarging each edge with a new set of $(r-2)$ vertices. Let $F_{k+1}^{(r)}$ be the $r$-uniform hypergraph with edges: $\{1,2,\ldots,r\}=[r]$ and $E_{ij} \cup \{i,j\}$ over all pairs $\{i,j\} \in \binom{[k+1]}{2} \setminus \binom{[r]}{2}$, where $E_{ij}$ are pairwise disjoint $(r-2)$-sets disjoint from $[k+1]$. We establish a general criterion that can obtain spectral stability results easily. Utilizing this criterion, we then derive spectral stability results for $H_{k+1}^{(r)}$ and $F_{k+1}^{(r)}$, respectively. Our results offer $p$-spectral analogues of the results by Mubayi-Pikhurko [J. Combin. Theory Ser. B, 97 (2007) 669-678] and Pikhurko [J. Combin. Theory Ser. B, 103 (2013) 220-225], and connect both hypergraph Turán theorem and hypergraph spectral Turán theorem in a unified form via the $p$-spectral radius. This is a joint work with Lele Liu, Zhenyu Ni, Jing Wang.