English

新闻中心

当前位置: 网站首页>>新闻中心>>通知公告>>正文

理学院2025年学术报告系列讲座(三十五)

发布于:2025-11-23 浏览:

题目Confined Orthogonal Matching Pursuit for Sparse Random Combinatorial Matrices

温金明 教授

20251124日(周 930

理学院楼310

主办单位:理学院

主讲人简介

  温金明,吉林大学教授、博士生导师、国家青年人才、广东省青年珠江学者;现任中国数学会理事、广东省计算数学学会常务理事、广东省运筹学会常务理事、IEEE Trans. Audio Speech Lang. Process.Alex. Eng. J.、《人工智能科学与工程》等期刊编辑。温教授的研究方向是整数信号和稀疏信号重构的算法设计与理论分析,近年来以第一作者/通讯作者和合作者在IEEE Trans. Inf. TheoryIEEE Trans. Signal Process.IEEE/ACM Trans. Audio Speech Lang. Process.ACM Trans. Asian Low-Resour. Lang. Inf. ProcessSIAM J. Imaging Sci.Inverse Probl.Appl. Comput. Harmon. Anal.等期刊发表60余篇学术论文,以第一发明人授权中国发明专利15件。2020年至今连续6年入选全球前2%顶尖科学家。

摘要

  This talk introduces a new Confined Orthogonal Matching Pursuit (Confined OMP) algorithm for sparse signal recovery over sparse random combinatorial matrices. The method constructs a confined set Γby exploiting the near-zero entries in the measurement vector and proves that, for a class of confined signalswith i.i.d. nonzero components, the true support is contained inΓwith probability one. This property allows a substantial reduction of redundant columns in the measurement matrix, thereby significantly decreasing the identification complexity of the recovery algorithm. A lower bound on the exact recovery probability is further derived, showing that when the number of measurements satisfies m=2eKln(nK), the recovery success probability is at least 11/(nK). Simulation results demonstrate that the proposed method achieves orders-of-magnitude complexity reduction in low-sparsity regimes while maintaining competitive recovery performance and preserving robustness in noisy linear systems.

上一条:长安大学理学院2025年专任教师招聘公告 下一条:理学院2025年学术报告系列讲座(三十四)

关闭