English

新闻中心

当前位置: 网站首页>>新闻中心>>通知公告>>正文

理学院2025年学术报告系列讲座(三十二)

发布于:2025-11-07 浏览:

题目1Phase-separated patterns in complex networks hinder the control of infectious diseases

主讲人靳祯 教授

时间2025119周日15:30-16:30

地点北校区服务大厅二层第三会议室

主办单位:理学院

主讲人简介

靳祯山西大学二级教授。现任教育部重点实验室主任,山西省数学会理事长,享受国务院政府特殊津贴。主要从事生物动力系统研究,先后主持国家级项目10 项,其中国家基金重点项目2 项,国家重点研发和重点专项课题各1项。曾获山西省科学技术奖(自然科学类)一等奖2项,教育部高等学校优秀成果二等奖(自然科学类)1项。

摘要

Self-organized infectious disease patterns have important practical significance for understanding the prevalence and distribution of infectious diseases. Currently, the research on the pattern formations of infectious disease in complex network reaction-diffusion systems is mostly limited to the Turing mechanism, and focuses on the simple reproduction or generation of patterns, and lacks a thorough understanding for the functions and significance of patterns. Combining the linear stability analysis and the variational function theory, we analyzed the dynamic behavior of the conservative complex network reaction-diffusion infectious disease system, determined the border of the spinodal region and the binodal region, and studied the phase separation pattern formations of infectious diseases on typical complex spatial networks. Furthermore, we founded that phase separation patterns can hinder the elimination of infectious diseases.


题目2A Nonlocal Dispersal Model for Species with Synchronized Maturation in a Heterogeneous Environment

主讲人白振国 教授西安电子科技大学

时间2025119周日16:30-17:30

地点北校区服务大厅二层第三会议室

主办单位:理学院

主讲人简介

白振国,西安电子科技大学教授,博士生导师,研究方向为生物数学、微分方程及其应用,已在SIAM J. Appl. Math.J. Math. Biol.J. Nonlinear Sci .等期刊发表论文 30 余篇。先后主持国家自然科学基金项目4项,省部级项目2项。主要成果获 2024 年陕西省高等学校科学技术奖一等奖和 2021 年陕西省科学技术奖二等奖。

摘要

We investigate the spatiotemporal dynamics of an impulsive nonlocal dispersal model with spatial heterogeneity. Since the model couples a differential equation with a recurrence relation, we reformulate the problem as a discrete-time recursive system via the solution map approach. In a bounded domain, we identify the spectral radius of the associated linear operator as a critical threshold that determines population persistence or extinction. In an unbounded domain, we establish the existence of a spreading speed and prove its equivalence to the minimal wave speed for spatially periodic traveling waves. Numerical simulations explore the effects of maturation delay, spatial heterogeneity, and nonlocal dispersal strategies on population distribution patterns.

上一条:长安大学理学院2025年专任教师招聘公告 下一条:理学院2025年学术报告系列讲座(三十一)

关闭